Two topics in Dark Matter:

Flavored Dark Matter and

Limits on y-ray Lines from Unitarity

Can Kılıç, UT Austin in collaboration with

K. Abazajian, P. Agrawal, S. Blanchet, Z. Chacko

Introduction

- Evidence for DM
 - velocities of galaxies in clusters
 - rotation curves
 - gravitational lensing
 - precision CMB data
- CDM strongly preferred by structure formation
- Non-baryonic, non-luminous
- Very weak self-interactions (Bullet Cluster)
- Fundamental microscopic understanding lacking.

Thermal Relics

- In the early universe, DM in thermal equilibrium
- Around the mass scale of DM, exponential annihilation.
- When rate of interactions drops below H, DM freezes out.
- DM redshifts as a⁻³ while radiation redshifts as a⁻⁴.
- Smaller cross section leads to higher relic density.
- Mass, cross section must be such that ρ_{DM} comes out correctly.

The WIMP Miracle

- Weak-scale (TeV) DM with cross sections characteristic of weak interactions works.
- Many proposed extensions of the SM contain WIMP candidates.
- Ways to look for WIMPs
 - Colliders (LHC will probe TeV scale)
 - Direct detection
 - Indirect detection
- Hoping to get clues about the identity of DM:
 - Mass
 - Spin
 - particle distinct from antiparticle?
 - Interactions with SM
 - Internal symmetries

FLAVORED DARK MATTER

The Flavor Puzzle

- Origin of SM flavor not understood; we should not discard possibility that TeV scale DM may transform under flavor.
- Occurs in SUSY, extra dimensions, but we will a adopt more agnostic viewpoint.
- Can 'flavored' DM be distinguished from vanilla DM?
- Complicated in general, need benchmarks.

Basic Setup

- Assume $U(3)_{\chi}$, contact interactions.
- Effects virtually unobservable if DM flavor symmetry is exact, dangerous if badly broken.
- Lepton benchmark: τFDM within reach of LHC, DD
- Quark benchmark: tFDM interesting at the LHC.

Lepton Benchmark

- Coupling to LH/RH leptons possible.
- Minimal benchmark, SU(2) singlets only. $\mathcal{L} \supset \lambda_{\alpha}^{i} \chi^{\alpha} e_{i}^{c} \phi + \text{h.c.}$
- Consider
 - relic abundance
 - flavor violation
 - direct detection
 - collider prospects

Relic Abundance

Only lightest χ is stable.

For SU(2) singlet case,

$$\langle \sigma v \rangle = \frac{\lambda^4 m_{\chi}^2}{32\pi (m_{\chi}^2 + m_{\phi}^2)^2}$$

Relic abundance requires λ ~0.3

for
$$m_{\chi}^{\sim}100GeV$$

For non-singlets, annihilation to gauge bosons, independent of $\boldsymbol{\lambda}$

Flavor Violation

 $\mu \rightarrow e\gamma$ gives strongest constraint

$$\Gamma_{\mu \to e \gamma} < 10^{-11} \Gamma_{\mu} \sim 10^{-30} \text{ GeV}$$

$$\mathcal{M} \sim \frac{\lambda^2 e}{16\pi^2 m_{\phi}^2}$$

$$\Gamma_{\mu \to e \gamma} \sim \left(\frac{\lambda^2 e}{16\pi^2}\right)^2 \frac{m_{\mu}^5}{m_{\phi}^4}$$

Need $\lambda < 10^{-2}$.

Extra flavor structure or SU(2) non-singlet needed.

Minimal Flavor Violation

In MFV setup, only SM Yukawas break flavor.

Spurion analysis to determine structure of masses and interactions.

$$\mathcal{L}_{SM} \supset y_A^i \ell^A e_i^c + \text{h.c.}$$

$$y_A^i$$
 is $(3,\bar{3})$ of $U(3)_L \times U(3)_E$

$$\mathcal{L} \supset \lambda_{\alpha}^{i} \chi^{\alpha} e_{i}^{c} \phi + \text{h.c.}$$
 χ can transform as I or e^c.

Minimal Flavor Violation

If χ transforms like e^c :

$$\lambda_j{}^i = \left(\alpha\mathbb{1} + \beta\; y^\dagger y\right)_j{}^i$$
 and

$$[m_{\chi}]_{i}^{j} = (m_{0}\mathbb{1} + \Delta m \ y^{\dagger}y)_{i}^{j}$$

If χ transforms like I:

$$\lambda_A{}^i = \alpha \ y_A{}^i$$

and

$$[m_{\chi}]_A{}^B = (m_0 \mathbb{1} + \Delta m \ yy^{\dagger})_A{}^B$$

Direct Detection

Low energy EFT:

$$\bar{\chi}\sigma_{\mu\nu}\chi\;F^{\mu\nu}$$
 ?

Chiral symmetry for χ

At dimension 6:

$$\mathcal{O}_1 = \left[\bar{\chi}\gamma^\mu (1-\gamma^5)\partial^\nu\chi \right. + h.c.\right] F_{\mu\nu}$$

$$\mathcal{O}_2 = \left[i\bar{\chi}\gamma^\mu (1-\gamma^5)\partial^\nu\chi \right. + h.c.\right] F^{\sigma\rho} \epsilon_{\mu\nu\sigma\rho}$$
 Size $\frac{\lambda^2 e}{16\pi^2 m^2}$

Charge and dipole interactions

Direct Detection

O₁ has log enhancement, O₂ finite.

Q-Q interaction SI, v enhanced

$$\frac{d\sigma_{ZZ}}{dE_r} = \frac{2m_N}{4\pi v^2} Z^2 \, b_p^2 \, F^2(E_r)$$

where
$$b_p = \frac{\lambda^2 e^2}{64\pi^2 m_\phi^2} \left[1 + \frac{2}{3} \log \left(\frac{m_\ell^2}{m_\phi^2} \right) \right]$$

D-Q is SI, but not v enhanced

D-D is v enhanced, but SD.

Z-exchange, W-loop for non-singlet.

Direct Detection

Within reach of next generation DD experiments!

Collider Signatures

 $\chi_{\mu} \leftrightarrow \chi_{e}$ unobservable small cross section similar BR, 4l final state is most interesting.

Backgrounds

Simulation tools: MG, Bridge, Pythia, PGS Demand 4 e/μ

- $(Z/\gamma)^{(*)}(Z/\gamma)^{(*)}$ reduced by Z-veto and MET cut. τ component reduced by p_T cuts.
- $t\bar{t}(Z/\gamma)^{(*)}$ reduced by jet veto, Z-veto.
- $WW(Z/\gamma)^{(*)}$ reduced by Z-veto, pure electroweak, small cross section.
- Fakes are subdominant.

Cuts

- 4 e/ μ with p_T > 7 GeV, 2 with E>50 GeV
- Veto p_{i2} > 30 GeV
- Veto |m_{OSSF}-mZ|<7 GeV
- MET>20 GeV

τFDM 2

$$m_{\chi,e} = 90 \text{ GeV}$$

 $m_{\chi,\mu} = 90 \text{ GeV}$
 $m_{\chi,\tau} = 70 \text{ GeV}$
 $m_{\phi} = 150 \text{ GeV}$

Discovery

Dataset	Event rate after cuts at 100 fb ⁻¹				
	Lepton cuts	Jet cuts	Z veto	MET	
$ au \mathrm{FDM1}$	46.73	42.83	38.41	35.01	
$ au { m FDM2}$	75.39	69.30	63.26	57.04	
$\ell^+\ell^-\ell^+\ell^-$	1617.94	1582.42	140.30	13.32	
$t\bar{t}\ell^+\ell^-$	89.57	19.45	4.92	4.70	
$WW\ell^+\ell^-$	14.70	13.98	2.51	2.51	

- τFDM 1/2 discoverable with 20/40 fb⁻¹
- Statistical uncertainties only, but conservative
- Extra handles: τ's, ratios.

Distinguishability

Can FDM be distinguished from a SUSY spectrum with similar signatures?

Strawman spectra: 2 neutralinos (Majorana) and 3 degenerate sleptons

Production: χ' and sleptons through Drell-Yan

Conservative approach: Do not rely on τ 's or cross section.

Use charge and flavor correlations.

Correlations

Asymmetries

Focus on hardest two leptons.

FDM: Upstream, OS, RF.

Slepton production:

- upstream: OS, SF

downstream: weak correlation for S,F

χ' production same as slepton/downstream case.

Strawman Spectra

- Spectrum 1: Slepton production dominates due to p_⊤ cuts. Hardest leptons from upstream.
- Spectrum 2: Only χ' production gives 4l.
- Spectrum 3: Both production mechanisms present, hardest leptons from downstream.

Results 0.0 Spectrum 2 -0.2Spectrum 1(b) Spectrum 3(b) Spectrum 3(a) -0.4 τ FDM1 -0.6-0.8Spectrum 1(a) -1.0-0.4-0.20.0 0.2 0.4 0.8 0.6 a_F

improvements possible: Reconstruction to reduce combinatorics, further correlations.

Conclusions

- Minimal τFDM scenario with thermal coupling within reach of next generation DM experiments.
- Collider phenomenology involves multilepton signatures, very clean.
- Charge and flavor correlations can be used to distinguish from vanilla DM.
- Robust bounds obtained for gamma ray lines from DM annihilation through unitarity considerations.
- Less stringent than continuum limits, but good to identify when full calculation is important.

LIMITS ON y-RAY LINES FROM UNITARITY

Beacon in the Dark

- Indirect detection at astrophysical distances: gammas are best.
- Direct annihilation gives monoenergetic photons. Rare.
- Bremsstrahlung and hadronic decays give continuum.
- Potential check on anomalies in other indirect detection channels.

Line and Continuum

Minimum strength for line with respect to continuum?

Line Bound From Unitarity

- Strength of line is related to the primary annihilation mode.
- No model independent bound for the full amplitude.
- Imaginary part of loop is much more robust.
- Ratio to continuum also model-independent.

Unitarity

S matrix is unitary

$$S^{\dagger}S = 1$$

$$-i(T-T^{\dagger}) = T^{\dagger}T$$

put in intermediate states

$$-i\langle f|(T-T^{\dagger})|i\rangle = \Sigma_m \langle f|T^{\dagger}|m\rangle \langle m|T|i\rangle$$

CP

$$-2i\operatorname{Im}\langle f|T|i\rangle = \Sigma_m\langle f|T^{\dagger}|m\rangle\langle m|T|i\rangle$$

single channel

$$4|\operatorname{Im}\langle f|T|i\rangle|^2 = |\langle f|T^{\dagger}|m\rangle|^2|\langle m|T|i\rangle|^2$$

Methods

- Use |J,M;L,S> basis.
- Map annihilation into decay process.
- Calculate imaginary part of loop amplitude.
- Bound is

Can also translate to line / continuum.

Case of Spin-0 Dark Matter

J=0, CP even

spin 1/2

chirally suppressed, heavy preferred CP forces S=1, L=1

spin 1

CP allows S=2, L=2 as well as S=0, L=0 latter preferred in non-relativistic limit

Can Kılıç, UT Austin

Case of Spin-1/2 (Majorana) DM

antisymmetry forces S=0, J=0, CP odd

spin 1/2

heavy preferred CP forces S=0, L=0

spin 1

CP allows S=1, L=1 only

Case of Spin-1/2 (Dirac) DM

take conservative case?

Case of Spin-1 (real) DM

symmetry forces J=0,2 J=0 already covered

spin 1/2

light is now OK. CP forces S=1 L can be {1,2,3}

spin 1

S=0, L=2 or S=2, L={0,1,2,3,4}

bound only in kinematic limits

Summary of Results

Annihilation

Dark Matter	Initial spin	Annihilation		Bound	
		Channel	Mode		
Scalar	J = 0	WW	L=0, S=0	In NR / UR limits.	
			L=2, S=2		
		$far{f}$	L=1, S=1	✓	
Majorana Fermion	J = 0	WW	L=1, S=1	✓	
		$far{f}$	L=0, S=0	✓	
Dirac Fermion	J = 0	WW	L=1, S=1	✓	
		$far{f}$	L=0, S=0	✓	
	J=1	1 Forbidden			
Real Vector Boson	J = 0	WW	L = 0, S = 0 L = 2, S = 2	In NR / UR limits.	
		$far{f}$	L=0, S=0	✓	
	J=2	WW	L = 2, S = 0 $L = \{0, 1, 2, 3, 4\}, S = 2$	In NR limit.	
		_			
		$far{f}$	$L = \{1, 2, 3\}, S = 1$	In NR / UR limits.	

Results – Scalar DM

Can be represented as decay of heavy scalar.

$$\mathcal{L}_{int} = \lambda \, \bar{f} f \, \phi$$

$$\frac{\Gamma_{\text{Im}}(\phi \to \gamma \gamma)}{\Gamma(\phi \to f\bar{f})} = \frac{N_c Q^4 e^4 m_f^2}{32\pi^2 m_\chi^2} \beta \left[\tanh^{-1} \beta \right]^2$$

$$\mathcal{L}_{int} = \frac{1}{\Lambda} \phi \operatorname{Tr} \left[F_{\mu\nu} F^{\mu\nu} \right]$$

$$\frac{\Gamma_{\rm Im}(\phi \to \gamma \gamma)}{\Gamma(\phi \to WW)} = \frac{3e^4}{64\pi^2}\beta \qquad (NR)$$

Results – Scalar DM

To W's, ultra-relativistic regime

Ultra-relativistic: Use equivalence theorem to separate transverse and longitudinal modes.

Longitudinal state is unique.

$$\mathcal{L}_{int} = lpha \phi \; H^\dagger H \qquad \qquad rac{\Gamma_{\mathrm{Im}}(\phi o \gamma \gamma)}{\Gamma(\phi o WW)} \sim rac{e^4}{16\pi^2} rac{m_W^4}{m_\chi^4} \left[\log \left(rac{4m_\chi^2}{m_W^2}
ight)
ight]^2$$

•Transverse state as well, once CP is taken into account.

$$\mathcal{L}_{int} = \frac{1}{\Lambda} \phi \operatorname{Tr} \left[F_{\mu\nu} F^{\mu\nu} \right] \qquad \qquad \frac{\Gamma_{\operatorname{Im}}(\phi \to \gamma \gamma)}{\Gamma(\phi \to WW)} = \frac{e^4}{32\pi^2} \left[\log \left(\frac{4m_{\chi}^2}{m_W^2} \right) \right]^2$$

•Combine:
$$\frac{\Gamma_{\rm Im}(\phi \to \gamma \gamma)}{\Gamma(\phi \to WW)} = \Gamma_{\rm T} \frac{e^4}{32\pi^2} \left[\log \left(\frac{4m_\chi^2}{m_W^2} \right) \right]^2$$

Can Kılıç, UT Austin

Results – Majorana Fermion DM

Can be represented as decay of heavy pseudoscalar.

To fermions:

$$\mathcal{L}_{int} = i\lambda \bar{f}\,\gamma^5 f\,\varphi$$

$$\frac{\Gamma_{\text{Im}}(\varphi \to \gamma \gamma)}{\Gamma(\varphi \to f\bar{f})} = \frac{N_c Q^4 e^4 m_f^2}{32\pi^2 m_\chi^2} \frac{1}{\beta} \left[\tanh^{-1} \beta \right]^2$$

To W's:

$$\mathcal{L}_{int} = \frac{1}{\Lambda} \varphi \text{Tr}(F_{\mu\nu} \tilde{F}^{\mu\nu})$$

$$\frac{\Gamma_{\rm Im}(\varphi \to \gamma \gamma)}{\Gamma(\varphi \to WW)} = \frac{e^4}{8\pi^2} \beta \left[\tanh^{-1} \beta \right]^2$$

both cases consistent with known SUSY results.

Results – Real Vector DM

To fermions: Non-relativistic limit. Single species assumed.

$$\mathcal{L}_{int} = -\frac{\kappa}{2} h^{\mu\nu} \bar{f} i \gamma_{\mu} \partial_{\nu} f$$

$$\frac{\Gamma_{\rm Im}(h \to \gamma \gamma)}{\Gamma(h \to f\bar{f})} \bigg|_{I=2} = \frac{N_c Q^4 e^4 \beta^3}{120\pi^2}$$

p-wave, weak limit

Results – Real Vector DM

To fermions: Ultra-relativistic limit.

If there are multiple final states and no phases, then bound still applies.

$$\begin{split} \mathcal{L}_{int} &= -\frac{\kappa}{2} h^{\mu\nu} \bar{f} \; i \bar{\sigma}_{\mu} \partial_{\nu} f \\ \frac{\Gamma_{\rm Im}(h \to \gamma \gamma)}{\Gamma(h \to f \bar{f})} \bigg|_{I=2} &= \frac{N_f N_c Q^4 e^4}{144 \pi^2} \quad \text{J=0 suppressed.} \\ \text{bound applies.} \end{split}$$

Results – Real Vector DM

To W's: Non-relativistic limit.

$$\mathcal{L}_{int} = \frac{\kappa}{2} h^{\mu\nu} \left(\left[(\partial_{\mu} W^{+\rho} - \partial^{\rho} W_{\mu}^{+}) (\partial_{\nu} W_{\rho}^{-} - \partial_{\rho} W_{\nu}^{-}) \right] - m_{W}^{2} W_{\mu}^{+} W_{\nu}^{-} + \mu \leftrightarrow \nu \right)$$

$$\frac{\Gamma_{\rm Im}(h \to \gamma \gamma)}{\Gamma(h \to WW)}\Big|_{T=2} = \frac{e^4}{20\pi^2}\beta$$

J=0 bound applies (More conservative)

Comparison With Known Cases

Comparison With Known Cases

Can Kılıç, UT Austin

Comparison With Known Cases

Comparison with Continuum Bound

For Lines:
$$\frac{d\Phi}{dE} = \frac{\langle \sigma_{\rm A} v \rangle}{8\pi m_\chi^2} \frac{\mathcal{J}}{{\rm J}_0} \frac{dN}{dE} \qquad \text{where} \quad \frac{dN}{dE} = 2\delta(E_\gamma - m_\chi)$$

Search region includes caps

$$|b| > 10^{\circ}$$

and Galactic center

$$|b| < 10^{\circ}$$
 $|\ell| < 10^{\circ}$

Choose Einasto DM profile with parameters to minimize signal

specifically
$$\rho_{\rm Einasto}(r) = \rho_s \exp\left[-\frac{2}{\alpha}\left(\left[\frac{r}{r_s}\right]^{\alpha} - 1\right)\right] \qquad \begin{array}{l} \alpha = 0.22 \\ r_s = 21 \; {\rm kpc} \\ r_\odot = 8.28 \; {\rm kpc} \end{array}$$

Can Kılıç, UT Austin

Comparison with Continuum Bound

For Continuum:

Isotropic Diffuse Gamma Rays

(Galactic + Extragalactic)

Conservative, dwarf galaxy limits could be an order of magnitude stronger.

Conservative boost factor (2.3)

Conclusions

- Minimal τFDM scenario with thermal coupling within reach of next generation DM experiments.
- Collider phenomenology involves multilepton signatures, very clean.
- Charge and flavor correlations can be used to distinguish from vanilla DM.
- Robust bounds obtained for gamma ray lines from DM annihilation through unitarity considerations.
- Less stringent than continuum limits, but good to identify when full calculation is important.